101 research outputs found

    Sleep and psychological factors are associated with meeting discharge criteria to return to sport following ACL reconstruction in athletes

    Get PDF
    INTRODUCTION: This study aimed to determine if sleep quality and psychological factors were associated with time to meet the discharge criteria to return to sport (RTS) following anterior cruciate ligament reconstruction (ACL-R) among athletes experiencing better quality of sleep and psychological responses returning faster to full activity. METHOD: A cohort-study design included 89 athletes following ACL-R. Each participant completed a battery of questionnaires at 6 different time points: within 3 days of injury occurrence and at post-surgery (1.5m, 3m, 4.5m, 6m and when discharge criteria were met). Assessment included sleep quality and quantity, symptoms of depression, anxiety, stress, psychological readiness to RTS and fear of re-injury. The primary outcome was the time needed to meet all discharge criteria to RTS. RESULTS: Sleep parameters and psychological factors were not associated with time to meet the discharge criteria to RTS. However, athletes that had low anxiety and insomnia scores at baseline and better sleep quality at 3m, 4.5m, 6m and at discharge were more adherent to the rehabilitation program and more likely to meet the RTS discharge criteria OR 1.2 (95% CI 1.0-1.34), 1.3 (95% CI 1.1, 1.7) and 2.0 (95% CI 1.1-3.4) respectively. CONCLUSIONS: Sleep quality and psychological factors were not associated with time to meet the discharge criteria to RTS but impacted whether athletes adhered and completed their rehabilitation program or not. Monitoring sleep quality and psychological factors of athletes before and following ACL-R surgery is important to identify athletes who could have difficulties in adhering to and completing their rehabilitation program to RTS

    Theory of Mind and Empathy in Preclinical and Clinical Huntington's Disease

    Get PDF
    We investigated cognitive and affective Theory of Mind (ToM) and empathy in patients with premanifest and manifest Huntington\u27s disease (HD). The relation between ToM performance and executive skills was also examined. 16 preclinical and 23 clinical HD patients, and 39 healthy subjects divided in 2 control groups were given a French adaptation of the Yoni test (Shamay-Tsoory and Aharon-Peretz, 2007) that examines first and second-order cognitive and affective ToM processing in separate conditions with a physical control condition. Participants were also given questionnaires of empathy and cognitive tests which mainly assessed executive functions (inhibition and mental flexibility). Clinical HD patients made significantly more errors than their controls in the first-and second-order cognitive and affective ToM conditions of the Yoni task, but exhibited no empathy deficits. However, there was no evidence that ToM impairment was related to cognitive deficits in these patients. Preclinical HD patients were unimpaired in ToM tasks and empathy measures compared to their controls. Our results are consistent with the idea that impaired affective and cognitive mentalising emerges with the clinical manifestation of HD, but is not necessarily part of the preclinical stage. Furthermore, these impairments appear independent of executive dysfunction and empathy

    Inter-relationship between sleep quality, insomnia and sleep disorders in professional soccer players

    Get PDF
    Objective Insufficient sleep duration and quality has negative effects on athletic performance, injury susceptibility and athlete development. This study aimed to assess the sleep characteristics of professional Qatar Stars League (QSL) soccer players. Methods In a cross-sectional study, QSL players (n=111; 23.7±4.8 years) completed three questionnaires to screen sleep disorders: (1) Pittsburgh Sleep Quality Index (PSQI), (2) Insomnia Severity Index (ISI) and (3) Epworth Sleepiness Scale (ESS). Poor sleep quality was defined as PSQI≥5, excessive daytime sleepiness was defined by ESS>8 and insomnia was defined as ISI≥11. Results The prevalence of poor sleep quality (PSQI≥5) was 68.5%, with subthreshold insomnia (ISI≥11) 27.0% and daytime sleepiness 22.5% (ESS>8). Sleep quality was positively associated with insomnia (r=0.42, p<0.001) and daytime sleepiness (r=0.23, p=0.018). Age, anthropometry, body composition and ethnicity were not associated with any of the reported sleep quality parameters. Conclusion The prevalence of poor sleep quality (68.5%) reported should concern practitioners. Increasing awareness of the importance of sleep relative to athletic performance, recovery, injury and illness appears prudent. Further, regular qualitative/quantitative sleep monitoring may help target subsequent evidence-informed interventions to improve sleep in those demonstrating undesirable sleep traits

    Impaired Decision Making and Loss of Inhibitory-Control in a Rat Model of Huntington Disease

    Get PDF
    Cognitive deficits associated with Huntington disease (HD) are generally dominated by executive function disorders often associated with disinhibition and impulsivity/compulsivity. Few studies have directly examined symptoms and consequences of behavioral disinhibition in HD and its relation with decision-making. To assess the different forms of impulsivity in a transgenic model of HD (tgHD rats), two tasks assessing cognitive/choice impulsivity were used: risky decision-making with a rat gambling task (RGT) and intertemporal choices with a delay discounting task (DD). To assess waiting or action impulsivity the differential reinforcement of low rate of responding task (DRL) was used. In parallel, the volume as well as cellular activity of the amygdala was analyzed. In contrast to WT rats, 15 months old tgHD rats exhibited a poor efficiency in the RGT task with difficulties to choose advantageous options, a steep DD curve as delays increased in the DD task and a high rate of premature and bursts responses in the DRL task. tgHD rats also demonstrated a concomitant and correlated presence of both action and cognitive/choice impulsivity in contrast to wild type (WT) animals. Moreover, a reduced volume associated with an increased basal cellular activity of the central nucleus of amygdala indicated a dysfunctional amygdala in tgHD rats, which could underlie inhibitory dyscontrol. In conclusion, tgHD rats are a good model for impulsivity disorder that could be used more widely to identify potential pharmacotherapies to treat these invasive symptoms in HD

    Dissociation between decision-making under risk and decision-making under ambiguity in premanifest and manifest Huntington&#039;s disease

    Get PDF
    We investigated decision-making under ambiguity (DM-UA) and decision making under risk (DM-UR) in individuals with premanifest and manifest Huntington\u27s disease (HD). Twenty individuals with premanifest HD and 23 individuals with manifest HD, on one hand, and 39 healthy individuals divided into two control groups, on the other, undertook a modified version of the Iowa Gambling Task (IGT), an adaptation of a DM-UA task, and a modified version of the Game of Dice Task (GDT), an adaptation of a DM-UR task. Participants also filled in a questionnaire of impulsivity and responded to cognitive tests specifically designed to assess executive functions. Compared to controls, individuals with premanifest HD were unimpaired in performing executive tests as well as in decision-making tasks, except for the Stroop task. In contrast, individuals with manifest HD were impaired in both the IGT and executive tasks, but not in the GDT. No sign of impulsivity was observed in individuals with premanifest or manifest HD. Our results suggest that the progression of HD impairs DM-UA without affecting DM-UR, and indicate that decision-making abilities are preserved during the premanifest stage of HD

    Modified impact of emotion on temporal discrimination in a transgenic rat model of Huntington disease

    Full text link
    Huntington\u27s disease (HD) is characterized by triad of motor, cognitive, and emotional symptoms along with neuropathology in fronto-striatal circuit and limbic system including amygdala. Emotional alterations, which have a negative impact on patient well-being, represent some of the earliest symptoms of HD and might be related to the onset of the neurodegenerative process. In the transgenic rat model (tgHD rats), evidence suggest emotional alterations at the symptomatic stage along with neuropathology of the central nucleus of amygdala (CE). Studies in humans and animals demonstrate that emotion can modulate time perception. The impact of emotion on time perception has never been tested in HD, nor is it known if that impact could be part of the presymptomatic emotional phenotype of the pathology. The aim of this paper was to characterize the effect of emotion on temporal discrimination in presymptomatic tgHD animals. In the first experiment, we characterized the acute effect of an emotion (fear) conditioned stimulus on temporal discrimination using a bisection procedure, and tested its dependency upon an intact central amygdala. The second experiment was aimed at comparing presymptomatic homozygous transgenic animals at 7-months of age and their wild-type littermates (WT) in their performance on the modulation of temporal discrimination by emotion. Our principal findings show that (1) a fear cue produces a short-lived decrease of temporal precision after its termination, and (2) animals with medial CE lesion and presymptomatic tgHD animals demonstrate an alteration of this emotion-evoked temporal distortion. The results contribute to our knowledge about the presymptomatic phenotype of this HD rat model, showing susceptibility to emotion that may be related to dysfunction of the central nucleus of amygdala

    Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control

    Full text link
    Pavlovian aversive conditioning requires learning of the association between a conditioned stimulus (CS) and an unconditioned, aversive stimulus (US) but also involves encoding the time interval between the two stimuli. The neurobiological bases of this time interval learning are unknown. Here, we show that in rats, the dorsal striatum and basal amygdala belong to a common functional network underlying temporal expectancy and learning of a CS–US interval. Importantly, changes in coherence between striatum and amygdala local field potentials (LFPs) were found to couple these structures during interval estimation within the lower range of the theta rhythm (3–6 Hz). Strikingly, we also show that a change to the CS–US time interval results in long-term changes in cortico-striatal synaptic efficacy under the control of the amygdala. Collectively, this study reveals physiological correlates of plasticity mechanisms of interval timing that take place in the striatum and are regulated by the amygdala

    Striatal neuropeptides enhance selection and rejection of sequential actions

    Get PDF
    The striatum is the primary input nucleus for the basal ganglia, and receives glutamatergic afferents from the cortex. Under the hypothesis that basal ganglia perform action selection, these cortical afferents encode potential “action requests.” Previous studies have suggested the striatum may utilize a mutually inhibitory network of medium spiny neurons (MSNs) to filter these requests so that only those of high salience are selected. However, the mechanisms enabling the striatum to perform clean, rapid switching between distinct actions that form part of a learned action sequence are still poorly understood. Substance P (SP) and enkephalin are neuropeptides co-released with GABA in MSNs preferentially expressing D1 or D2 dopamine receptors respectively. SP has a facilitatory effect on subsequent glutamatergic inputs to target MSNs, while enkephalin has an inhibitory effect. Blocking the action of SP in the striatum is also known to affect behavioral transitions. We constructed phenomenological models of the effects of SP and enkephalin, and integrated these into a hybrid model of basal ganglia comprising a spiking striatal microcircuit and rate–coded populations representing other major structures. We demonstrated that diffuse neuropeptide connectivity enhanced the selection of unordered action requests, and that for true action sequences, where action semantics define a fixed structure, a patterning of the SP connectivity reflecting this ordering enhanced selection of actions presented in the correct sequential order and suppressed incorrect ordering. We also showed that selective pruning of SP connections allowed context–sensitive inhibition of specific undesirable requests that otherwise interfered with selection of an action group. Our model suggests that the interaction of SP and enkephalin enhances the contrast between selection and rejection of action requests, and that patterned SP connectivity in the striatum allows the “chunking” of actions and improves selection of sequences. Efficient execution of action sequences may therefore result from a combination of ordered cortical inputs and patterned neuropeptide connectivity within striatum

    Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control

    Full text link
    Pavlovian aversive conditioning requires learning of the association between a conditioned stimulus (CS) and an unconditioned, aversive stimulus (US) but also involves encoding the time interval between the two stimuli. The neurobiological bases of this time interval learning are unknown. Here, we show that in rats, the dorsal striatum and basal amygdala belong to a common functional network underlying temporal expectancy and learning of a CS–US interval. Importantly, changes in coherence between striatum and amygdala local field potentials (LFPs) were found to couple these structures during interval estimation within the lower range of the theta rhythm (3–6 Hz). Strikingly, we also show that a change to the CS–US time interval results in long-term changes in cortico-striatal synaptic efficacy under the control of the amygdala. Collectively, this study reveals physiological correlates of plasticity mechanisms of interval timing that take place in the striatum and are regulated by the amygdala

    Alterations in cognitive performance during passive hyperthermia are task dependent

    Get PDF
    The objectives of this study were to (1) assess the effect of passive heating upon attention and memory task performance, and (2) evaluate the effectiveness of the application of cold packs to the head on preserving these functions. Using a counterbalance design 16 subjects underwent three trials: a control (CON, 20°C, 40% rH), hot (HOT, 50°C, 50% rH) and hot with the head kept cool (HHC). In each condition, three attention tests and two memory tests were performed. Mean core, forehead and tympanic temperatures were all significantly higher (p< 0.05) during HOT (38.6° ±0.1°, 39.6° ±0.2° and 38.8°±0.1°C, respectively) and HHC (38°±0.2, 37.7°±0.3° and 37.7°C, respectively) than in CON (37.1°±0.6°, 33.3° ±0.2° and 35.9°±0.3°C, respectively). Results indicate that there was impairment in working memory with heat exposure (p < 0.05) without alteration in attentional processes. The regular application of cold packs only prevented the detrimental effect of hyperthermia on short-term memory. Our results show that impairments in cognitive function with passive hyperthermia and the beneficial effect of head cooling are task dependent and suggests that exposure to a hot environment is a competing variable to the cognitive processes
    corecore